Leaf and stem. (150 g) Isolation by standard procedures<sup>2</sup> gave 19 mg unedoside (0·01%), identified as described above, and a mixture of other iridoids. Column chromatography of the mixture on silaca gel (n-BuOH-MeOH-H<sub>2</sub>O, 4:1:5) followed by gel filtration on Sephadex afforded 80 mg of a pure amorphous compound. The structure of this apparently new iridoid (m.p. of acetate: 140-142°) is now under investigation.

Voucher specimens are deposited in WE Pharmakognosie der Freien Universität Berlin.

Acknowledgements—We are indebted to the Director of the National Botanic Gardens of South Africa in Kirstenbosch, and to the Chief of the Botanical Research Institute, Pretoria, Department of Agricultural Technical Services for the collection and identification of the plant material. Our thanks are due to Mrs. H. Pistor and Miss M. Schüler for their able technical assistance and to Miss Dreke and Mr. Lindemann, WE Pharmazie der FU Berlin, for recording the NMR and MS respectively. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft.

Phytochemistry, 1972, Vol. 11, pp. 3097 to 3098. Pergamon Press. Printed in England.

## DICOTYLEDONAE

## **IRIDACEAE**

## ISOFLAVONES OF IRIS KUMAONENSIS AND I. GERMANICA

K. L. DHAR and ASHOK K. KALLA Regional Research Laboratory, Srinagar-5, India

(Received 9 May 1972. Accepted 1 June 1972)

Key Word Index-Iris kumaonensis; I. germanica; Iridaceae; isoflavones; iridin; irisolone.

Plant. Iris kumaonensis Wall. and I. germanica L. Occurrence. I. kumaonensis. Western Himalayas, from Kashmir to Kumaon, 8000–12 000 ft. I. germanica. Cultivated in Kashmir Valley. Uses. Medicinal. Previous work. I. kumaonensis. None. I. germanica, Essential oil, a C-glycosyl flavone<sup>2</sup> and an isoflavone glucoside.<sup>3</sup>

I. kumaonensis. Defatted, EtOH extract of whole plant (dry, 390 g) on concentration yields, 7-(glucosyloxy)-5,3'-dihydroxy-6,4',5'-trimethoxyisoflavone (iridin, 15 g), m.p., UV, IR, m/e 522 (M<sup>+</sup>) and NMR, diacetate, m.p. and UV; acid hydrolysis to 5,7,3'-trihydroxy-6,4',5'-trimethoxyisoflavone (irigenin<sup>3,4</sup>), m.p., UV, IR, m/e 360 (M<sup>+</sup>) and NMR (2-H, 2.05  $\tau$ ; CDCl<sub>3</sub>), triacetate, m.p. and UV, and glucose, PC.

<sup>&</sup>lt;sup>1</sup> R. N. Chopra, S. L. Nayar and I. C. Chopra, Glossary of Indian Medicinal Plants, p. 143, C.S.I.R., New Delhi (1956).

<sup>&</sup>lt;sup>2</sup> A. KAWASE and K. YAGESHETA, Agric. Biol. Chem. Tokyo 32(4), 537 (1968).

<sup>&</sup>lt;sup>3</sup> W. BAKER, J. Chem. Soc. 1022 (1928).

<sup>4</sup> W. BAKER et al., Tetrahedron Letters 5, 6 (1960).

I. germanica. CHCl<sub>3</sub> extract of defatted, vacuum dried MeOH extract of rhizomes (dry, white flowered variety) on concentration yields, 4'-hydroxy-5-methoxy-6,7-methylene-dioxyisoflavone (irisolone<sup>5,6</sup>), m.p., IR, UV, m/e 312 (M<sup>+</sup>), NMR (2-H, 1.94  $\tau$ , C<sub>5</sub>D<sub>5</sub>N), and m.m.p., acetate, m.p., IR and NMR, hydrated methyl ether, m.p. and UV, anhydrous methyl ether, m.p., m.m.p. and UV.

Acknowledgements—Thanks are due to the authorities of Department of Chemistry University of Exeter, England, for the spectral data, to Dr. T. Matsumato, Department of Chemistry, Hiroshima University, for the authorities sample of irisolone and its methyl ether and to A. M. Chishti for technical assistance.

<sup>&</sup>lt;sup>5</sup> K. W. GOPINATH, A. R. KIDWAI and L. PRAKASH, Tetrahedron 16, 201 (1961).

<sup>&</sup>lt;sup>6</sup> K. Fukui and T. Matsumato, Bull. Chem. Soc. Japan 38, 887 (1965).